Scintillation Study: Update

Anne Sickles June 12, 2007

General Plan

- no scintillation in pisa
- use HIJING events run through PISA to get the distribution of scintillation
 - use general PISA information on charged tracks (KinHits)
 - drawback: approximate track as a straight line, don't take into account bending of the tracks in field
- generate scintillation weighted by HIJING density and trace to HBD, what fraction of light is blocked by the shades?

Where do particles come from?

fKinHits.r_vertex:fKinHits.z_vertex

all particles, 10 HIJING events

where do particles go?

tracing charged particles through the HBD gas binning: 0.5cm x 0.5cm x 0.5cm

shades

- initial idea:
 - grid in phi and z, 3 parameters, spacing in each direction and the height
 - other shades to block inactive regions of the detector
 - HV panels
 - large z, small r region, need to use vertex distribution to define large z
 - haven't had time to model these options, but it shouldn't result in loss of signal

BBC Vertex Distribution

run 230665

scintillation in d+Au?

number of DC tracks from run3 d+Åu (Zvi) >99% have less than 50 tracks (note the log scale)

issues

- initial results are inconsistent with simple solid angle estimates
 - assume there's a bug in defining the shades
 - working on it
- the details that come from GEANT are left out, dE/ dx, bending inside HBD
 - probably not a huge effect
 - one handle is to use differing PISA information to study how sensitive scintillation rejection is to the source distribution